{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# XID+SED Example Run Script\n", "\n", "(This is based on a Jupyter notebook, available in the [XID+ package](https://github.com/H-E-L-P/XID_plus/tree/master/docs/notebooks/examples/) and can be interactively run and edited)\n", "\n", "XID+ is a probababilistic deblender for confusion dominated maps. It is designed to:\n", "\n", "1. Use a MCMC based approach to get FULL posterior probability distribution on flux\n", "2. Provide a natural framework to introduce additional prior information\n", "3. Allows more representative estimation of source flux density uncertainties\n", "4. Provides a platform for doing science with the maps (e.g XID+ Hierarchical stacking, Luminosity function from the map etc)\n", "\n", "This notebook shows an example on how to run XID+ with an SED emulator on the GALFORM simulation of the COSMOS field\n", "* SAM simulation (with dust) ran through SMAP pipeline_ similar depth and size as COSMOS\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Import required modules" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "slideshow": { "slide_type": "skip" } }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/Users/pdh21/anaconda3/envs/xidplus/lib/python3.6/site-packages/dask/config.py:168: YAMLLoadWarning: calling yaml.load() without Loader=... is deprecated, as the default Loader is unsafe. Please read https://msg.pyyaml.org/load for full details.\n", " data = yaml.load(f.read()) or {}\n", "WARNING: AstropyDeprecationWarning: block_reduce was moved to the astropy.nddata.blocks module. Please update your import statement. [astropy.nddata.utils]\n" ] } ], "source": [ "from astropy.io import ascii, fits\n", "from astropy.table import Table\n", "import pylab as plt\n", "%matplotlib inline\n", "from astropy import wcs\n", "import seaborn as sns\n", "import glob\n", "from astropy.coordinates import SkyCoord\n", "\n", "import numpy as np\n", "import xidplus\n", "from xidplus import moc_routines\n", "import pickle\n", "import os\n", "\n", "from xidplus.numpyro_fit.neuralnet_models import CIGALE_emulator_kasia" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "#Folder containing maps\n", "imfolder=xidplus.__path__[0]+'/../test_files/'\n", "\n", "pswfits=imfolder+'cosmos_itermap_lacey_07012015_simulated_observation_w_noise_PSW_hipe.fits.gz'#SPIRE 250 map\n", "pmwfits=imfolder+'cosmos_itermap_lacey_07012015_simulated_observation_w_noise_PMW_hipe.fits.gz'#SPIRE 350 map\n", "plwfits=imfolder+'cosmos_itermap_lacey_07012015_simulated_observation_w_noise_PLW_hipe.fits.gz'#SPIRE 500 map\n", "\n", "\n", "#Folder containing prior input catalogue\n", "catfolder=xidplus.__path__[0]+'/../test_files/'\n", "#prior catalogue\n", "prior_cat='lacey_07012015_MillGas.ALLVOLS_cat_PSW_COSMOS_test.fits'\n", "\n", "\n", "#output folder\n", "output_folder='./'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Load in images, noise maps, header info and WCS information" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "#-----250-------------\n", "hdulist = fits.open(pswfits)\n", "im250phdu=hdulist[0].header\n", "im250hdu=hdulist[1].header\n", "\n", "im250=hdulist[1].data*1.0E3 #convert to mJy\n", "nim250=hdulist[2].data*1.0E3 #convert to mJy\n", "w_250 = wcs.WCS(hdulist[1].header)\n", "pixsize250=3600.0*w_250.wcs.cd[1,1] #pixel size (in arcseconds)\n", "hdulist.close()\n", "#-----350-------------\n", "hdulist = fits.open(pmwfits)\n", "im350phdu=hdulist[0].header\n", "im350hdu=hdulist[1].header\n", "\n", "im350=hdulist[1].data*1.0E3 #convert to mJy\n", "nim350=hdulist[2].data*1.0E3 #convert to mJy\n", "w_350 = wcs.WCS(hdulist[1].header)\n", "pixsize350=3600.0*w_350.wcs.cd[1,1] #pixel size (in arcseconds)\n", "hdulist.close()\n", "#-----500-------------\n", "hdulist = fits.open(plwfits)\n", "im500phdu=hdulist[0].header\n", "im500hdu=hdulist[1].header \n", "im500=hdulist[1].data*1.0E3 #convert to mJy\n", "nim500=hdulist[2].data*1.0E3 #convert to mJy\n", "w_500 = wcs.WCS(hdulist[1].header)\n", "pixsize500=3600.0*w_500.wcs.cd[1,1] #pixel size (in arcseconds)\n", "hdulist.close()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Load in catalogue you want to fit (and make any cuts)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "catalogue=Table.read(catfolder+prior_cat)\n", "catalogue['ID']=np.arange(0,len(catalogue))\n", "catalogue.add_index('ID')\n", "# select only sources with 100micron flux greater than 50 microJy\n", "sgood=catalogue['S100']>0.010\n", "inra=catalogue['RA'][sgood]\n", "indec=catalogue['DEC'][sgood]\n", "inz=catalogue['Z_OBS'][sgood]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "XID+ uses Multi Order Coverage (MOC) maps for cutting down maps and catalogues so they cover the same area. It can also take in MOCs as selection functions to carry out additional cuts. Lets use the python module pymoc to create a MOC, centered on a specific position we are interested in. We will use a HEALPix order of 15 (the resolution: higher order means higher resolution), have a radius of 100 arcseconds centered around an R.A. of 150.74 degrees and Declination of 2.03 degrees." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "from astropy.coordinates import SkyCoord\n", "from astropy import units as u\n", "c = SkyCoord(ra=[150.74]*u.degree, dec=[2.03]*u.degree) \n", "import pymoc\n", "moc=pymoc.util.catalog.catalog_to_moc(c,100,15)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "XID+ is built around Python classes:\n", "* A `prior class`: Contains all the information specific to a map being fitted (e.g. the map, noise map, a multi order coverage map, a prior positional catalogue, point spread function and pointing matrix)\n", "* A `phys_prior` : Contains all the prior information on physical parameters( e.g. redshift, SFR etc), and the SED emulator\n", "\n", "There should be a prior class for each map being fitted.It is initiated with a map, noise map, primary header and map header and can be set with a MOC. It also requires an input prior catalogue and point spread function." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "#---prior250--------\n", "prior250=xidplus.prior(im250,nim250,im250phdu,im250hdu, moc=moc)#Initialise with map, uncertianty map, wcs info and primary header\n", "prior250.prior_cat(inra,indec,prior_cat,ID=catalogue['ID'][sgood])#Set input catalogue\n", "prior250.prior_bkg(-5.0,5)#Set prior on background (assumes Gaussian pdf with mu and sigma)\n", "#---prior350--------\n", "prior350=xidplus.prior(im350,nim350,im350phdu,im350hdu, moc=moc)\n", "prior350.prior_cat(inra,indec,prior_cat,ID=catalogue['ID'][sgood])\n", "prior350.prior_bkg(-5.0,5)\n", "\n", "#---prior500--------\n", "prior500=xidplus.prior(im500,nim500,im500phdu,im500hdu, moc=moc)\n", "prior500.prior_cat(inra,indec,prior_cat,ID=catalogue['ID'][sgood])\n", "prior500.prior_bkg(-5.0,5)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Set PRF. For SPIRE, the PRF can be assumed to be Gaussian with a FWHM of 18.15, 25.15, 36.3 '' for 250, 350 and 500 $\\mathrm{\\mu m}$ respectively. Lets use the astropy module to construct a Gaussian PRF and assign it to the three XID+ prior classes." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "#pixsize array (size of pixels in arcseconds)\n", "pixsize=np.array([pixsize250,pixsize350,pixsize500])\n", "#point response function for the three bands\n", "prfsize=np.array([18.15,25.15,36.3])\n", "#use Gaussian2DKernel to create prf (requires stddev rather than fwhm hence pfwhm/2.355)\n", "from astropy.convolution import Gaussian2DKernel\n", "\n", "##---------fit using Gaussian beam-----------------------\n", "prf250=Gaussian2DKernel(prfsize[0]/2.355,x_size=101,y_size=101)\n", "prf250.normalize(mode='peak')\n", "prf350=Gaussian2DKernel(prfsize[1]/2.355,x_size=101,y_size=101)\n", "prf350.normalize(mode='peak')\n", "prf500=Gaussian2DKernel(prfsize[2]/2.355,x_size=101,y_size=101)\n", "prf500.normalize(mode='peak')\n", "\n", "pind250=np.arange(0,101,1)*1.0/pixsize[0] #get 250 scale in terms of pixel scale of map\n", "pind350=np.arange(0,101,1)*1.0/pixsize[1] #get 350 scale in terms of pixel scale of map\n", "pind500=np.arange(0,101,1)*1.0/pixsize[2] #get 500 scale in terms of pixel scale of map\n", "\n", "prior250.set_prf(prf250.array,pind250,pind250)#requires PRF as 2d grid, and x and y bins for grid (in pixel scale)\n", "prior350.set_prf(prf350.array,pind350,pind350)\n", "prior500.set_prf(prf500.array,pind500,pind500)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "fitting 101 sources \n", "\n", "using 870, 870 and 219 pixels\n" ] } ], "source": [ "print('fitting '+ str(prior250.nsrc)+' sources \\n')\n", "print('using ' + str(prior250.snpix)+', '+ str(prior250.snpix)+' and '+ str(prior500.snpix)+' pixels')\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Before fitting, the prior classes need to take the PRF and calculate how much each source contributes to each pixel. This process provides what we call a pointing matrix. Lets calculate the pointing matrix for each prior class" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "prior250.get_pointing_matrix()\n", "prior350.get_pointing_matrix()\n", "prior500.get_pointing_matrix()" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "priors=[prior250,prior350,prior500]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To create the `phys_prior` class, you need to provide a table with some prior information for the physical parameters that contains the following:\n", "* an ID column, `ID` that matches the `ID` in the prior class\n", "* an `log10SFR_mu` and `log10SFR_sig` column that contains the mean and standard deviation for a Normal prior distribution\n", "* an `z_mu` and `z_sig` column that contains the mean and standard deviation for a Normal prior distribution (truncated at 0.01 so not to go too small)\n", "* a `fracAGN_alpha` and `fracAGN_beta` column that contains the alpha and beta values for a Beta prior distribution (i.e. that is constrained to be between 0 and 1\n", "* a `atten_mu` and `atten_sig` column that contains the mean and standard deviation for a Normal prior distribution,\n", "* a `dust_alpha_mu` and `dust_alpha_sig` column that contains the mean and standard deviation for a Normal prior distribution \n", "* a `tau_main_mu` and `tau_main_sig` column that contains the mean and standard deviation for a Normal prior distribution" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "phys_prior_table = Table([priors[0].ID,\n", " np.full(priors[0].nsrc,1),\n", " np.full(priors[0].nsrc,1),\n", " catalogue.loc[priors[0].ID]['Z_OBS'].data,\n", " catalogue.loc[priors[0].ID]['Z_OBS'].data*0.1,\n", " np.full(priors[0].nsrc,1.0),\n", " np.full(priors[0].nsrc,3.0),\n", " np.full(priors[0].nsrc,1.95),\n", " np.full(priors[0].nsrc,1.0),\n", " np.full(priors[0].nsrc,2),\n", " np.full(priors[0].nsrc,1),\n", " np.full(priors[1].nsrc,3.5),\n", " np.full(priors[1].nsrc,0.25)\n", " ],\n", " names=('ID','log10SFR_mu', 'log10SFR_sig', 'z_mu', 'z_sig','fracAGN_alpha','fracAGN_beta','atten_mu','atten_sig','dust_alpha_mu','dust_alpha_sig','tau_main_mu','tau_main_sig'),\n", " meta={'name': 'phys prior table'},\n", " dtype=[np.longlong]+[float for i in range(0,12)])\n", "phys_prior_table.add_index('ID')" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/html": [ "Table length=101\n", "
ID | log10SFR_mu | log10SFR_sig | z_mu | z_sig | fracAGN_alpha | fracAGN_beta | atten_mu | atten_sig | dust_alpha_mu | dust_alpha_sig | tau_main_mu | tau_main_sig |
---|---|---|---|---|---|---|---|---|---|---|---|---|
int64 | float64 | float64 | float64 | float64 | float64 | float64 | float64 | float64 | float64 | float64 | float64 | float64 |
8177 | 1.0 | 1.0 | 2.1290905475616455 | 0.2129090577363968 | 1.0 | 3.0 | 1.95 | 1.0 | 2.0 | 1.0 | 3.5 | 0.25 |
8179 | 1.0 | 1.0 | 2.127817392349243 | 0.21278174221515656 | 1.0 | 3.0 | 1.95 | 1.0 | 2.0 | 1.0 | 3.5 | 0.25 |
8206 | 1.0 | 1.0 | 2.1299428939819336 | 0.2129942923784256 | 1.0 | 3.0 | 1.95 | 1.0 | 2.0 | 1.0 | 3.5 | 0.25 |
8215 | 1.0 | 1.0 | 2.126209259033203 | 0.21262092888355255 | 1.0 | 3.0 | 1.95 | 1.0 | 2.0 | 1.0 | 3.5 | 0.25 |
11643 | 1.0 | 1.0 | 1.0341293811798096 | 0.1034129410982132 | 1.0 | 3.0 | 1.95 | 1.0 | 2.0 | 1.0 | 3.5 | 0.25 |
20716 | 1.0 | 1.0 | 1.437013864517212 | 0.14370138943195343 | 1.0 | 3.0 | 1.95 | 1.0 | 2.0 | 1.0 | 3.5 | 0.25 |
22635 | 1.0 | 1.0 | 2.521920919418335 | 0.25219210982322693 | 1.0 | 3.0 | 1.95 | 1.0 | 2.0 | 1.0 | 3.5 | 0.25 |
22636 | 1.0 | 1.0 | 2.522642135620117 | 0.25226423144340515 | 1.0 | 3.0 | 1.95 | 1.0 | 2.0 | 1.0 | 3.5 | 0.25 |
22638 | 1.0 | 1.0 | 2.522317886352539 | 0.25223180651664734 | 1.0 | 3.0 | 1.95 | 1.0 | 2.0 | 1.0 | 3.5 | 0.25 |
22864 | 1.0 | 1.0 | 0.4999462366104126 | 0.04999462515115738 | 1.0 | 3.0 | 1.95 | 1.0 | 2.0 | 1.0 | 3.5 | 0.25 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
277272 | 1.0 | 1.0 | 2.1351029872894287 | 0.21351030468940735 | 1.0 | 3.0 | 1.95 | 1.0 | 2.0 | 1.0 | 3.5 | 0.25 |
277365 | 1.0 | 1.0 | 2.358628749847412 | 0.2358628809452057 | 1.0 | 3.0 | 1.95 | 1.0 | 2.0 | 1.0 | 3.5 | 0.25 |
282324 | 1.0 | 1.0 | 1.383598804473877 | 0.1383598893880844 | 1.0 | 3.0 | 1.95 | 1.0 | 2.0 | 1.0 | 3.5 | 0.25 |
286312 | 1.0 | 1.0 | 2.115485668182373 | 0.2115485668182373 | 1.0 | 3.0 | 1.95 | 1.0 | 2.0 | 1.0 | 3.5 | 0.25 |
286322 | 1.0 | 1.0 | 2.1113414764404297 | 0.2111341506242752 | 1.0 | 3.0 | 1.95 | 1.0 | 2.0 | 1.0 | 3.5 | 0.25 |
286345 | 1.0 | 1.0 | 2.1165578365325928 | 0.21165578067302704 | 1.0 | 3.0 | 1.95 | 1.0 | 2.0 | 1.0 | 3.5 | 0.25 |
286346 | 1.0 | 1.0 | 2.115492343902588 | 0.21154923737049103 | 1.0 | 3.0 | 1.95 | 1.0 | 2.0 | 1.0 | 3.5 | 0.25 |
286347 | 1.0 | 1.0 | 2.114086151123047 | 0.2114086151123047 | 1.0 | 3.0 | 1.95 | 1.0 | 2.0 | 1.0 | 3.5 | 0.25 |
286348 | 1.0 | 1.0 | 2.112424850463867 | 0.21124248206615448 | 1.0 | 3.0 | 1.95 | 1.0 | 2.0 | 1.0 | 3.5 | 0.25 |
286349 | 1.0 | 1.0 | 2.1147334575653076 | 0.21147334575653076 | 1.0 | 3.0 | 1.95 | 1.0 | 2.0 | 1.0 | 3.5 | 0.25 |